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ARSTRACT 

The temperature integrals of the form 

T 

I = s T” e%IRT dT 

0 

where m = l/2, 1, 312, and 2 have been evaluated for T = 300-800 K and E = 30-100 
kcal mole-r. The -log I values have been fitted to linear equations in E and l/T. Numeri- 
cal equations have been obtained by treating the slopes and intercepts as functions of E 
and T. These equations permit evaluation of the integrals at any values of E and T. The 
functional dependence of -log I on the m value has also been investigated and linear rela- 
tionships exist for given values of E and T. 

INTRODUCTION 

The approximation of the temperature integral 

I = dT e_ElRT dT (1) 

has received much attention in both theoretical [l-6] and practical [7-121 
approaches. Tables of values [4] and approximate empirical equations [ 31 
are available. However, it is of fundamental importance to realize that this 
integral is a result of assuming that Arrhenius behavior of the rate constant 

k = A e_EIRT (2) 

is observed. When A is not independent of temperature, it is possible, for 
many cases, to write 

A = A,Tm 

so that the rate constant must be written as 

k = A,Tm e_JrlRT 

(3) 

(4) 

where m is either an integer or half integer 113,141. Recently, Segal [15] 
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provided approximate analytical functions for these cases in which 

I= J= Tm e--EJR= dT (5) 
0 

where m is an integer or half integer. However, suitable tables of values for 
these integrals are either not extant or are of a fragmentary nature. It is the 
purpose of this paper to present the values for the integrals [eqn. (5)] for 
m = l/2, 1, 3/2, and 2 and to determine empirical relationships for obtaining 
appropriate values of the integrals for any values of T and E as well as m. 

METHOD 

The numerical integrations of the integrals having the form of eqn. (5) 
were carried out as previously described to determine -log I [ 161. For each 
value of m used, a series of computations were carried out for T = 300 K and 
E = 30 kcal mole-’ using 10, 20, 30, 40, 50, 100, 200, 400, and 1000 sub- 
intervals. The values obtained using 1000 subintervals appear to be correct to 
at least six decimal places [16]. At E = 30 kcal mole-l and T = 300 K, the 
200 subinterval integration gave values of -log I that agree with those of the 
1000 subinterval integration to five decimal places. However, as was previ- 
ously observed, the accuracy decreases at higher values of E. Therefore, it is 
likely that the values of -log I for the higher E values are accurate to four 
decimal places in some cases since a 200 subinterval integration was used in 
all cases. 

Acceleration of convergence was determined by means of the Romberg 
algorithm [ 16,171. This was carried out using the values of -log I obtained 
from 10,20,30,40, and 50 subintervals. 

Curve fitting to provide .the empirical relationships between -log’1 and E 
and between -log I and l/T was carried out using a program for a Texas 
Instruments TI-59 programmable calculator. Linear regression is carried out 
as a subroutine of that program. This approach was also used to obtain the 
equations in which the slopes and intercepts were treated as variables in T 
and E and to investigate the variation in -log I with the value of m. 

RESULTS AND DISCUSSION 

The results of the numerical integrations of 

I=f T" e_EIRT dT (5) 
0 

are shown in Tables l-4 for m = l/2,1,3/2, and 2, respectively. Most of the 
data are accurate to either four or five decimal places, about the the limit im- 
posed by using R = 1.9872 cal mole-’ deg-I, with the values being more 
accurate for lower values of E [ 161. These data provide a basis for develop- 
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ing numerical procedures that include non-isothermal methods which do not 
follow the Arrhenius behavior of the frequency factor. In that sense, they 
provide numerical approximations to the functions described by Segal [15]. 

Application of the Romberg algorithm to values of -log I obtained using 
10, 20, 30, 40, and 50 subintervals resulted in values which were no more 
accurate than those obtained using 100 subintervals. This was true for each 
value of m. As was found previously, the Romberg acceleration of conver- 
gence does not seem practical as a substitute for using a large number of sub- 
intervals [ 163. 

Functions of E and l/T 

It has previously been shown that for the temperature-independent tie- 
quency factor (m = 0), -log I can be related to the activation energy by 

-logI=ME+B (6) 

where M and B are constants and the temperature is constant. Further, for a 
given value of E, the relationship between -log I and temperature can be 
expressed as 

-log I = N&T) + D (7) 

where N and D are constants. The -log I values shown in Tables l-4 fitted 
to these equations resulted in the regression parameters shown in Tables 5 
and 6. It is readily apparent that these non-Arrhenius temperature integrals 
obey these relationships as well as do those where the frequency factor is 
independent of temperature [ 3,161. 

Equations relating slopes and intercepts for a constant m 

In the case of the tabulated values of the temperature integral for Arrhe- 
nius behavior, ii; was found that the slopes and intercepts of eqns. (6) and (7) 
varied in a systematic way. Thus, for m = 0, Gyulai and Greenhow used 
linear regression to establish relationships between the slopes or intercepts 
and E or T [ 31. For example, in the equation 

-logI=ME+B 

it was found that 

M = K(l/Z’)L 

and 

B = P log(l/T) + Q 

(6) 

(8) 

(3) 

where K, L, P, and Q are constants. Thus, a numerical equation of the form 

-log I = K(l/Z’)LE + log (1/Tip + Q (10) 

was obtained by making the equation for -log I as a function of E to reflect 
the variation of slope and intercept with temperature. 
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TABLE5 

Linearregression parameters for-log&T Tm e-E/RT dT= ME +B 

TK) 

m=1/2 m=l 

Slope -Intercept Corr.coeff. Slope -Intercept Corr_coeff_ 

VW (B) UW (B) 

300 0.735546 2.15664 0.999999 0.735509 3.39061 0.999999 
400 0.553375 2.46195 0.999998 0.553328 3.75699 0.999998 
500 0.444048 2.69706 0.999997 0.443990 4.03921 0.999997 
600 0.371148 2.88795 0.999995 0.371077 4.26839 0.999996 
700 0.319148 3.04839 0.999994 0.318980 4.46104 0.999994 
800 0.279979 3.18657 0.999992 0.279893 4.62770 0.999993 
900 0.249574 3.30779 0.999991 0.249480 4.77263 0.999991 

1000 0.225242 3.41566 9.999989 0.225139 4.90224 0.999990 

m = 312 m=2 

Slope -Intercept Corr. coeff. Slope -Intercept Corr.coeff. 
W) (B) WI @I 

300 0.735473 4.62462 0.999999 0.735437 5.85867 0.999999 
400 0.553281 5.05209 0.999998 0.553235 6.34726 0.999998 
500 0.443933 5.38145 0.999997 0.443877 6.72379 0.999996 
600 0.371011 5.64895 0.999996 0.370946 7.02965 0.999996 
700 0.318905 5.87386 0.999994 0.318831 7.28686 0.999994 
800 0.279809 6.06766 0.999993 0.279727 7.50852 0.999993 
900 0.249388 6.23774 0.999992 0.249298 7.70310 0.999992 

1000 0.225040 6.38914 0.999990 0.224943 7.87634 0.999991 

Similarly, for 

-logI=N(l/Z’) +D 

it was found that 

N= YEx 

and 

(7) 

(11) 

D=WlogE+U (12) 
where X, Y, U, and W are constants. Equations (11) and (12) yield, by sub- 
stitution into eqn. (7) 

-log I = YIF(l/T) + log P + u (13) 
when the variation in slope and intercept with activation energy is included. 

Using linear regression, similar numerical equations have been obtained in 
this work for each value of m used. Table 7 shows the values of the constants 
of eqns. (10) and (13) for the cases where m =0,1/2,1,3/2,and2_Thevalues’ 
for m = 0 case are based on the previously published data for Arrhenius 
behavior [ 3,161. The fit of all the data to equations (8)-(11) yielded corre- 
lation coefficients of 0.9999 or higher. 
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TABLE 6 

Linear regression parameters for -1ogJT F e-E/R= dT=N(l/Z') +D 

E m = I.12 m=l 

(kd 
mole-l) Slope -Intercept C&r. coeff. Slope -Intercept Corr.coeff. 

(N) (D) (N) (D) 

30 7095.95 3.69827 0.999916 7204.20 5.27479 0.999883 
40 9285.36 3.59031 0.999950 9394.27 5.16980 0.999929 
50 11473.31 3.50402 0.999967 11582.66 5.08542 0.999953 

60 13660.47 3.43209 0.999976 13770.13 5.01483 0.999966 

70 15847.15 3.37040 0.999982 15957.04 4.95412 0.999975 
80 18033.51 3.31637 0.999986 18143.57 4.90083 0.999980 
90 20219.63 3.26825 0.999989 20329.84 4.85332 0.999984 
100 22405.57 3.22488 0.999991 22515.89 4.18044 0.999987 

m= 312 m= 2 

Slope -Intercept Corr. coeff. Slope -Intercept Corr. coeff. 

(N) (D) (N) (D) 

30 7312.55 6.85163 0.999845 7420.99 8.42879 0.999803 
40 9503.24 6.74950 0.999906 9612.28 8.32939 0.999880 
50 11692.05 6.66696 0.999937 11801.48 8.24864 0.999919 
60 13879.81 6.59766 0.999955 13989.53 8.18060 0.999942 
70 16067.07 6.53825 0.999966 16176.88 8.12179 0.999956 
80 18253.65 6.48537 0.999973 18363.75 8.06996 0.999966 
90 20440.05 6.43845 0.999979 20550.28 8.02362 0.999972 

100 22626.22 6.39604 0.999982 22736.56 7.98168 0.999977 

The numerical equations of the form (10) or (13) permit interpolation of 
the data to give -1Gg I values for any values of E and T. Therefore, using 
these equations, a table of -log I values at a large number of combinations 

,_gf temperature and activation energy can be constructed without having to 
%erform that number of integrations. It is also possible to quickly obtain a 
value of -log I at any desired conditions of T, E, and m. 

TABLE7 

'I'heconstantsofeqns.(lO)and(13)obtained bylinearregression 

m Eqn.(lO) Eqn.(13) 

K L P Q X Y W u 

0 199.477 0.98258 1.92299 3.84257 0.96443 261.884 0.92462 -3.49132 
l/2 199.832 0.98288 2.40749 3.80321 0.95595 273.489 0.90712 -5.04236 
1 200.248 0.98325 2.89091 3.76614 0.94762 285.404 0.89004 -6.59430 
312 200.615 0.98357 3.37412 3.72853 0.93943 297.632 0.87344 -8.14725 
2 201.654 0.98444 3.85819 3.69304 0.93139 310.184 0.85754 -9.70148 
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Dependence of iog Ion m 

Since the m = 0 case was .dealt with previously and this work covers the 
case where m = l/Z, 1, 3/Z, and 2, it is now possible to examine in detail the 
dependence of -log I on m. Using the values of -log I at given values of E 
and T, linear regression was performed to relate -log I to m. The curve fit 

program tests several functions but the linear equation 

-logI=Am + C (14) 

where A and C are constants gave the best fit. In fact, for several of the series 
of data tested, the correlation coefficients were 1.00 . . . and it was always 
above 0.99999. The value of the slope was almost equal to log T in each 
case. Furthermore, the values of the intercepts were simply the values of 
-log I at the same T and E that results when m = 0 [IS]. The linear relation- 
ships of eqn. (14) also permit interpolation and extrapolation to include 
other values of m. For example, at T = 300 K and E = 30 kcal mole-l, the 
relationship is 

log I = -2.46908 m + 21.09613 (15) 

with r = 0.9999999. Thus, if m = 3, the value predicted for -log I is 
22.330684. The actual result of the numerical integration is 22.330314. 
Using the data shown in Tables l-4 and those previously given [16], it is 
possible to obtain relationships to calculate -log I for any value of m. Then, 
using eqns. (10) and (13), one can obtain the values of -log I at other values 
of T and E. Therefore, the results presented here, taken in combination, per- 
mit evaluation of the temperature integral for all realistic values of E, TV and 
m. 

CONCLUSION 

The temperature integrals which have the frequency factor given by A = 
A,I” have been evaluated. Relationships between -log I and E or l/T have 
been established and their slopes and intercepts related to m, E, and T. The 
values of -log I are linear functions of m at given values of E and T. .The 
necessary relationships are described to determine -log I for any values of E, 
T, and m. 
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